
Dev(Sec)Ops
Thoughts from the Trenches.

Chris Madden
Distinguished Engineer - Software Security and System Architect
CISSP, ISSAP, CISA

Continuity: “the maintenance of continuous action and self-consistent detail”

https://www.google.com/search?q=continuity+meaning

Deliver Value to the customer through a timely
efficient solution

1. Value: deliver customer value - not hardware -
not software - and not the things that have no
value

2. Timely: on time but just in time e.g. not efficient
to deliver stuff that is not needed or used for
many months

3. Efficient: minimal functionality and effort
required

4. Solution: not just the thing that is shipped - but
all the things the customer needs to use the
features to create value for them

The customer cares about what they are trying to
do - not your product.

Purpose: Deliver Value to the Customer

Not just this
Product This

 Customer

Right Product, Built Right

t

~50% defects
happen before
any code is
written

Right
Product,
Built Right

>80% code is
open source or
third party

Once the
product is
shipped, it still
has to be
maintained.

People: The Most Important Component
1. Management exists to enable / facilitate the teams to do their job - not to dictate / control

how it is done.
a. Happy People are Productive People are Happy People

– Any initiative will fail without support from the top E.g. if executive management don’t embrace
Agile/dev(sec)ops then it won’t work.

2. Agile/dev(sec)ops works because it Drives people (Mastery, Autonomy, Purpose)
3. The techie problems are easy. The people problems are hard.
4. Continuous Communication is key (“most critical part of software development”)

a. Living documentation (social media way of working) is key - avoid derivate snapshots (e.g.
PowerPoint, Excel)

b. A developer, program manager, or executive should be able to see the same data in real time

Despite advances in Artificial Intelligence, and
Machine Learning, systems, today, are
developed and used by people.

People’s goals/rewards need to be
aligned towards delivering customer
value e.g. if the SQA group are rewarded
for finding more defects, then it is not in
their interest to help prevent, detect these
defects at development time. Or if the IT
department is rewarded for low risk or low
vulnerabilities, then the systems may be
secure but deliver low value to, or not be
useable by, the customer.

https://www.amazon.co.uk/Drive-Daniel-H-Pink/dp/184767769X/

The Feature Request Intake needs to be managed
(The further upstream work is managed, the
bigger the impact)

1. This is done via a
well maintained Product Backlog. There should
be a “healthy tension” between those asking for
the work and those doing the work.

2. Feature Request can come from:

1. Customer (e.g 70%)

2. Engineering (e.g. 30%)

1. Enablers - Architectural Runway

2. Technical Debt

3. “Average company, more than a third of what
they are building is junk stories”
Jeff Sutherland, CEO of Scrum Inc.

Feature Request: The Most Important Step

https://resources.collab.net/blogs/product-backlog-is-deep-invest-wisely-and-dive-carefully
https://www.scaledagileframework.com/architectural-runway/
https://youtu.be/XkhJDbaW0j0?t=105

Feature Request - Mind The Gap!
1. Tell me what you want

a. Not what you think you
can have

b. Don’t try to sound smart
c. Don’t tell me how to do it

2. Multiple independent forms of
Requirements, Specification,
and Test - and Prototypes

No Continuity or Consistency or Feedback

Feature Request: DoR, DoD, AC
For an enterprise, there are 3 levels of

requirement definition and
refinement:

1. Portfolio
a. e.g. a new product for a given

value stream / business area
2. Product

a. e.g. a set of features for that
product

3. Team / Sprint
a. e.g. a set of enhancements for

each feature

It is critical that at each level the following
are defined before the item progresses:

1. Definition of Ready
2. Definition of Done
3. Acceptance Criteria

Teams Work off the top of the queue
i.e. one Prioritized Product Backlog.

Feature Requests should compete
against each other - not against the
software team.

Feature Request: When can we have it?

Requirements

Requirements: Requirements, Documentation, Tests as Code

Behavior Driven Development (BDD) Requirements,
Documentation, Tests as Code gives Continuity i.e.
executable requirements specification.

Continuity + Consistency + Feedback

https://en.wikipedia.org/wiki/Behavior-driven_development

Architecture: Continuous Architecture Principles

1. Architect products, not just solutions for projects: Architecting products is more efficient than just designing point solutions

to projects and focuses the team on its customers.

2. Focus on Quality Attributes, not on functional requirements. Quality attribute requirements drive the architecture.
3. Delay design decisions until they are absolutely necessary. Design architectures based on facts, not on guesses There is

no point in designing and implementing capabilities that may never he used; it is a waste of time and resources.

4. Architect for change - leverage “the power of small." Big, monolithic, tightly coupled components are hard to change.

instead, leverage small, loosely coupled services

5. Architect for build, test, and deploy. Most architecture methodologies exclusively focus on software building activities, but

we believe that architects should be concerned about testing and deployment activities in order to support Continuous

Delivery.

6. Model the organization after the design The way teams are organized drives the architecture and design of the systems

they are working on

Architecture > Continuous Architecture
principles > Focus on Quality Attributes

Focus on Quality
Attributes, not on
functional
requirements.
Quality attribute
requirements drive the
architecture.

Development: Software Assurance:
Lifecycle

Software assurance is defined as "the
level of confidence that software is free
from vulnerabilities, either intentionally
designed into the software or
accidentally inserted at any time during
its lifecycle, and that the software
functions in the intended manner."

 Software Assurance = Quality
+ Security

Security Training (e.g. secure coding,
applied cryptography) for engineers is
the foundation for Software Assurance

Development: Software Assurance:
Right Tool for the Job

Signal-to-Noise

Using multiple independent/orthogonal tools can be more optimal

than using one tool (see notes for worked example)

Development: Software Assurance:
SonarQube

SonarQube is a continuous inspection dashboard tool that measures
source code quality across 7 axes

1. Coding standards—respect coding standards and follow best
practices

2. Potential bugs—eliminate code violations to prevent vulnerabilities
3. Documentation and comments—provide documentation especially

for the Public API, the source code
4. Duplicated code—isolates and refines duplications,
5. Don't Repeat Yourself Complexity—equalizes disproportionate

distributed complexity among components; eliminates complexity if
possible

6. Test coverage—writes unit tests, especially for complex parts of the
software

7. Design and architecture—minimize dependencies

Development: Software Assurance:
Secure Coding

1. We developed a Secure Coding training as follows:
a. Using SEI CERT C Coding Standard (C++, Java, Perl, Android also supported) as the foundation.
b. Feedback the issues found by the tools (Cppcheck, Coverity, SonarQube, Public Vulnerability (CVE), Manual

Code Reviews)
i. into our Secure Coding training (CWEs)

1. For every CWE, we listed 2 known bad examples from our code - along with a known good
example and guidelines.

ii. into our tools/checkers
1. E.g. check and warning at compile time for deprecated/unsafe functions e.g. strcpy()

2. Note:
a. CWE stands for Common Weakness Enumeration, and has to do with the vulnerability—not the instance

within a product or system.
b. CVE stands for Common Vulnerabilities and Exposures, and has to do with the specific instance within a

product or system—not the underlying flaw

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Test: Often and Early: Continuous And Automatic

Continuous Integration Continuous Test Pipeline

Delivery: Continuous Feedback
1. Current: Customer reports an issue,

get logs, diagnose, release a fix
2. Short Term Future: Issue is found

before customer sees or reports it
3. Long Term Future: Predictive

Analytics: Issue is predicted before
it happens and fixed before
customer sees it

Continuous
Feedback

Continuity: “the maintenance of continuous action and self-consistent detail”

https://www.google.com/search?q=continuity+meaning

The Future

The Last 10 Years

1. It’s about the Customer - not the Product
2. Continuous Information across Lifecycle

a. Sharing information (Confluence)
b. Executive Dashboards driven from Jira (not PowerPoint where dreams come

true)

3. Going from “Thinking we’re Agile” to “Being Agile”
a. “We’re doing standups, sprints, and using Jira. We’re Agile. Right?”
b. Agile at SW team level (Sprint backlog)
c. Agile at Enterprise level (Sprint backlog, Product Backlog, Portfolio Backlog)

The Next 10 Years

1. More Continuity between Requirements - Documentation - Test - SW
a. Less heavy lifting required by people to build software
b. The breadth and depth and rate of change of new technologies means that developers can’t keep pace
c. Value moves further up the stack - the lower layers become commodities

2. From Continuous Delivery to Predictive Delivery
a. More data measured and analysed by machines allowing prediction at each stage in the lifecycle.
b. From Feed-Back to Feed-Forward
c. From Lagging indicators to Leading indicators
d. Predictive Analytics

3. From People to Machines as Consumers/Customers/Creators
4. From Agile to Agile at Scale

https://en.wikipedia.org/wiki/Predictive_analytics

Recommended Reading: Books

1. Hands-On Security in DevOps: Ensure continuous security, deployment, and delivery wit
h DevSecOps 30 Jul 2018

2. Agile Application Security Paperback – Enabling Security in a Continuous Delivery Pipelin
e - 26 Sep 2017

3. Accelerate: The Science of Lean Software and Devops: Building and Scaling High Perfor
ming Technology Organizations Paperback – 30 Apr 2018

4. A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet
FutureSmart Firmware (Agile Software Development)

https://www.amazon.co.uk/Hands-Security-DevOps-continuous-deployment/dp/1788995503
https://www.amazon.co.uk/Hands-Security-DevOps-continuous-deployment/dp/1788995503
https://www.amazon.co.uk/Agile-Application-Security-Laura-Bell/dp/1491938846
https://www.amazon.co.uk/Agile-Application-Security-Laura-Bell/dp/1491938846
https://www.amazon.co.uk/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339
https://www.amazon.co.uk/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339
https://www.amazon.co.uk/Practical-Approach-Large-Scale-Agile-Development/dp/0321821726
https://www.amazon.co.uk/Practical-Approach-Large-Scale-Agile-Development/dp/0321821726

Recommended Reading: Deliver Value
at Scale: SAFe

1. Agile was developed with small
teams in mind.

2. There are several approaches to
scaling agile per
AgileScalingKnowledgebase. Of
these ScaledAgileFramework
(SAFe) is the most mature and
supported.

3. Problems of Scale:
Interdependencies between
teams, components, deliverables.
Capacity planning.

https://www.scaledagileframework.com/
https://app.box.com/s/fqt8bub0l2ac2fhh76zye7bnky90gqui

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

