Dev(Sec)Ops

Thoughts from the Trenches.

Chris Madden
Distinguished Engineer - Software Security and System Architect
CISSP, ISSAP, CISA

Fearure Request
- Siranegy & Metrics

Requirements
+ SeCurcy Rpquinsrmenes. [SFRUSARY

The DevOps Factory

A F:l:j- E Gowermance * Risk Amossment
+ Education & Securicy Guidance + Abuse Case Development Architecture & Design
DewDps k= & modern software development approach that understanding the Factory + Drganizational Risk Factors + Threat Modeling, Socurty Archiechars
sirives o bring development and operations teams together In the DewDps factory, stakeholders wark collaboratively - Threat Assessmant + Securiy Sorkes - Architecharal Risk Analss
along with other stakeholders to improwe efficiency and acrass the software development lifecycle. All of the cogs. + Scresn Davelopren Tooks - SeCLEity DR sign REquUIFsTeEnes
A . k 2 + SecurefHardened Emarooments Artack Surface Anahysis
autcomes by focusing on shared business goats, DewOps in the wheel portray the work cycling through with constant e ¥
i % : . g - Threat ing
follows and expands on key principles of the Agile software inputs in the d._ﬁereru-. phases of the development. - Vulrerabiiny Anakesis and Faw Hypothesis
development and Lean enginesring movermneants and The end result is & product that represents a cohesive - Sacurity Dusign Aevew
represents a fundamental shift in how large, distributed praduction cycle that has efficiently considersd - Dependencks st Open-source ibrares
enterprise organizations develop and deliver software. everything from business goals, agile

Dewelapment

- Sacure Coding Fraciices

- Zacurity Fooused Code Roview

- Deprecaie Unsade Funcoians

- Perform Securty Unit Testing

- Searic Code Analysis

- Checking of process and pracedures for seoure
coding & iracea bikiy

development practices, and security,
1o [ESTING, Monitmoring and
continued improvement.

By cultivating cross-functional collective engagement in
sofiware development projects throughout the sofbware
development lifecycle [SDLC), DevDps affects the people,
processes, and vechnology of an organization. Devops also
requires adopting and implementing cutting-edge practices
based on the primary tenants of collaborative culture,
auromation, data-driven processes, infrastruciure as code,
and ubiquitous, real-time system monitoring.

Testing

- Security Test Flanining

+ Security Testing

- Fuzz Testing

« Fisk hased secuniy esting
« Forform Dyramic Anakis

- Fensiration Testing

- werdication of Seourity
Implemantation

+ Weriication of Process and
Frocedures

- Dependency Mariicring

A

S
\

The features and benefits of DevOps include
Consistently developing sofraane systems with higher
() gualicy and acruracy of progect budgeting and estmaran

i I Increased wisibility and stakeholder input inta features far
the nest rekase as ns DL\rng\.ﬂhDi‘:l

(AR
N\
N\

AL
\
N

“{‘i};\
\

..:Q
W

Delivery

Engaging stakehelders carly and consistenity
[chroughout the SOLC, leading o fewer defects and incormact

FeqUENETIETS

\1

< Cantainer Sl':lJ'E,'

+ Final Security Reiaw

« Cartify, Apkeasa and Archive

« Secwurity Acceptance Testing
 Trarseon Incidert Resporse Plan

-‘:{é-

Buillding trust between software dewelopment and IT,
enabling organic process Improvement and risk mitigation

Maximizing business value by enabling technical saff o

Deploy
adapt 1o changing requiFBments or endronmencal factors

- Appikcation Security Monioring
* Secure Deployment Frocess

- Serure Emaroniment

- Serure Operational Erablenent

https://www.google.com/search?q=continuity+meaning

Purpose: Deliver Value to the Customer

Deliver Value to the customer through a timely
efficient solution

1. Value: deliver customer value - not hardware -
not software - and not the things that have no
value

2. Timely: on time but just in time e.g. not efficient
to deliver stuff that is not needed or used for
many months

3. Efficient: minimal functionality and effort
required

4. Solution: not just the thing that is shipped - but
all the things the customer needs to use the
features to create value for them

The customer cares about what they are trying to
do - not your product.

rrrrrrr
+ SecurefHardened Emarcrments

w5 and

Not just this

Product

Right Product, Built Right

Built right
Code/Component
Quality
craftmanship
How
Business Success
failure
Right product
What Customer/Feature
Features ahgn&?ﬂ
WMisaligned to business need
requirements
Useless Maintenance
crap nightmare
Poor
craftmanship
Castto
Comect

Phase That a
Defect is Created

Requirem ents Archllecture Detalled Design Construction Maintenance

Phase That a Defect is Corrected

sloprment litecycle. All of the Cogs
wark oycling through with constant
hases of the development.

- SpourefHardened EMATOEMEnTs

i i ~idnerabiicy Aralysis and Fow Hypathesis
JCt Ehat represents a cohesive . - Sacurity Dusign Aeview
= efficiently considered ~50% defects >80% COde IS - Depancen: oz Open-source ibrares

is goals, agile

open source or
third party

Dewelepment
- Sacune Coding Practices

happen before
any code is

o written
coding & iracea bikiy

-,.a; Testing
::E';:" * Sorurity Test Planning
o
*

]
‘l";;, - Fenetration Tesi
O, - Werdicancn of Seourty
Le® Impiementation
o + Weriication of Process and

PFrocedures
+ Dependency Maniioring

1 Delivery

o Testing
nciders Resporse Flan

Security Monioring
Agyment Frooess
ot

tional Erablement

product is
shipped, it still
has to be

maintained.

People: The Most Important Component

1. Management exists to enable / facilitate the teams to do their job - not to dictate / control
how it is done.
a. Happy People are Productive People are Happy People
— Any initiative will fail without support from the top E.g. if executive management don’t embrace
Agile/dev(sec)ops then it won’t work.
Agile/dev(sec)ops works because it people (Mastery, Autonomy, Purpose)
The techie problems are easy. The people problems are hard.
Continuous Communication is key (“most critical part of software development”)
a. Living documentation (social media way of working) is key - avoid derivate snapshots (e.g.
PowerPoint, Excel)
b. A developer, program manager, or executive should be able to see the same data in real time

~WN

TER By

People’s goals/rewards need to be
aligned towards delivering customer
value e.g. if the SQA group are rewarded
for finding more defects, then it is not in
their interest to help prevent, detect these
defects at development time. Or if the IT
department is rewarded for low risk or low

vulnerabilities, then the systems may be . . e .
but deli | Iy £ yt b Despite advances in Artificial Intelligence, and
secure but deliver low value to, or not be Machine Learning, systems, today, are

useable by, the customer. developed and used by people.

https://www.amazon.co.uk/Drive-Daniel-H-Pink/dp/184767769X/

Feature Request: The Most Important Step

The Feature Request Intake needs to be managed
(The further upstream work is managed, the
bigger the impact)

1. This is done via a

There should
be a “healthy tension” between those asking for
the work and those doing the work.

2. Feature Request can come from:
1. Customer (e.g 70%)
2. Engineering (e.g. 30%)

1. Enablers -
2. Technical Debt

3. “Average company, more than a third of what
they are building is junk stories”

https://resources.collab.net/blogs/product-backlog-is-deep-invest-wisely-and-dive-carefully
https://www.scaledagileframework.com/architectural-runway/
https://youtu.be/XkhJDbaW0j0?t=105

Feature Request - Mind The Gap!

1. Tell me what you want
a. Not what you think you
can have
b. Don’t try to sound smart
c. Don’t tell me how to do it
2. Multiple independent forms of
Requirements, Specification,
and Test - and Prototypes

Expectation
gap with
customer
engagement Expectation
gap without
customer
engagemeni

Customer contact points

Time

Figure 2-1. Frequent customer engagement reduces the expectation gap.

How the customer explained it How the Project Leader How the Analyst designed it Howe the Frogrammer wrote it How the Business Consultant
understood it described it

How the project was What operatiens installed
decumented

How the customer was billed How it was supported What the customer really
needed

No Continuity or Consistency or Feedback

Feature Request: DoR, DoD, AC

Roll Up & Reporting
For an enterprise, there are 3 levels of]
: - Portfolio Level
requirement definition and
reﬁnement: Funnel Evaluation Backlog Implementation Done

INITIATIVE | INITIATIVE | | INITIATIVE ‘ INITIATIVE
|

1. Portfolio
a. e.g.anew product for a given
value stream / business area Program & Product Level
2. Product
t of feat for that Teams Work off the top of the queue
a. ©.g.asetotieatures fortha Release 1 i.e. one Prioritized Product Backlog.
product / . Feature Requests should compete
ficklog Evaluation In Progress

against each other - not against the
software team.

3. Team/ Sprint
a. e.g.a set of enhancements for

each feature

[AccCrit veried 3
It is critical that at each level the following

v
Sprint Backlog Done

FEATURE

In Progress

are defined before the item progresses:

nnnnn

1. Definition of Ready . '
2. Definition of Done
3. Acceptance Criteria

Feature Request: When can we have it?

LOOK THIS NEW AGILE THING:

TO DEAL WITH
UNPREDICTABLE EVENTS AND
THINGS WE CANNOT CONTROL
IN OUR PROTECTS

WE CAN PRIORITIZE, REDUCE
THE SCOPE, CHANGE
REQUIREMENTS AT ANY TIME
AND INCREASE THE CHANCES
OF SUCCESS OF THE PROTECT

LOOK, THIS IS YOUR NEW
PROJECT, WITH FIXED
DEADLINE, FIXED SCOPE AND
FIXED QUALITY: YOU CAN BE
"AGILE™ INSIDE THIS
TRIANGLE

P“unch your own at hitp J/dilbert.com

"Dilbert characters Scoft Adams Inc.

Project Cost and Schedule Uncertainty

Barry Boehm, 1995

4x \ . 1.6x
time

E\ 2% \ A5 S 2
L =2 \ 5
SR — x 2%
S — | S 3
i = 2k

S30% / i

29% i

Initial Requirements Desi y
Definition Specification gn Project

Complete

Requirements

establishes project
constraints, resources,
and commitments

Marketing or
Product Management,

specifies business
or market
requirements;
requests changes

Technical
Support

provides input from bug
reports and enhancement

< Saoura’Hardened EfmaTrEmants

rSEOre

requests

describe user
requirements and
quality attributes; Ut
review requirements

provides business
requirements

Development
Group

handles licensing
Legal of tools and
Department components

specify business and quality
requirements; participate in
9 e allocates system

vendor selection k
requirements to software;

- requests changes

IT's TOO BIG TO
READ, BUT I CAN
GUESS FROM ITS
WEIGHT WHAT mMuUsT
BE IMN THERE.

YOU KNOW IT'S
A MULTI-USER,
GLOBAL SYSTEM,

NO, T'™M NOT

YOUR REQUIREMENTS
DOCUMENT IS THE
BIGGEST TVE EVER
SEEN.

Bfqf4q © 1999 United Foatare Synaicats, Ine.

www.dllbert.com scottadams@aol.com

{u

Requirements: Requirements, Documentation, Tests as Code

o The business owner tells o The business analyst D

the business analyst writes a requirements =
what he wants. document. fcerards Travsrerrang sonwy]
o The business owner g rerto: Tramsferring aoney to
They define pebcenario: Tramstarr
s

and the business analyst P
have a conversation about q

what the business neads. s?ructured__
English-language
@ format "scenarios."

o The tester translates e The technical
ihe requiremonis writer translates the

The developer translates o The scenarios guide

the requirements e The business analyst, the the developer and act
into software. developer, and the tester as automated tests.
elaborate the requirements
together.
@ @

]
)

ino testeanes: software into functional o The automated tests provide o The tester uses these
and technical feedback on progress and help scenarios as the basis
documentation. document the application. for the tests.
Figure 1.1 The traditional development process provides many opportunities for misunderstandings Figure 1.2 BDD uses conversations around examples, expressed In a form that can be easily
and miscommunication. automated, to reduce lost information and misunderstandings.
When Kent Beck (who originated the notion of a “story”) developed
(BD D) Req uirements, his ideas on software development, he called out communication as a key
Documentation, Tests as Code g ives Continu ity i.e. value of effective teams. Stories are the building blocks of communication
executable requ irements speciﬁcation . between developers and those who use their work. Story maps organize

and structure these building blocks, and thus enhance this communication
process—which is the most critical part of software development itself.

Continuity + Consistency + Feedback

From the book: User Story Mapping

https://en.wikipedia.org/wiki/Behavior-driven_development

Architecture: Continuous Architecture Principles

1. Architect products, not just solutions for projects: Architecting products is more efficient than just designing point solutions
to projects and focuses the team on its customers.

2. Focus on Quality Attributes, not on functional requirements. Quality attribute requirements drive the architecture.
3. Delay design decisions until they are absolutely necessary. Design architectures based on facts, not on guesses There is
no point in designing and implementing capabilities that may never he used; it is a waste of time and resources.

4. Architect for change - leverage “the power of small." Big, monolithic, tightly coupled components are hard to change.
instead, leverage small, loosely coupled services

5. Architect for build, test, and deploy. Most architecture methodologies exclusively focus on software building activities, but
we believe that architects should be concerned about testing and deployment activities in order to support Continuous
Delivery.

6. Model the organization after the design The way teams are organized drives the architecture and design of the systems

they are working on

Architecture > Continuous Architecture

principles > Focus on Quality Attributes

F OCUS on Q ua I Ity Code Distribution Accuracy
Att r| b u tes N Ot on Data Storage Availability
i ! Data Transmission Concurrency
functional Deployment Consumability
. Function/Logic/Services Customization Points
requiremen ts. Events Environment (Green)
. . Hardware Internationalization
Qua [ty attribute Network Layering/Partitioning
: : System Interface Maintenance
requirements drive the Clsar [ininelao Operations
1 Usage Quality
architecture. st
Regulations
Reliability
Non-functional requirements geuse?
are critical drivers of your ngﬁggabmw
architecture Support
Timeliness
Usability

Validation

Development: Software Assurance:

Lifecycle

Software assurance is defined as "the Diagnostics
level of confidence that software is free
from vulnerabilities, either intentionally
designed into the software or
accidentally inserted at any time during
its lifecycle, and that the software

functions in the intended manner."

Software Assurance = Quality
+ Security

. .. . o) Vulnerability
Security Training (e.g. secure coding, : p . : ; Management

applied cryptography) for engineers is
the foundation for Software Assurance

Fuzzing &
Stress tests

| Static Analysis

—_—

east Privilege
& Separation of
Dut

Buffer Clearing Manual Review

Development: Software Assurance:

Right Tool for the Job

Signal-to-Noise OWASP WBE Results Interpretation Guide

100% s
Tool reports everything is vulnerable

Negative Positive 90%
Ideal vulnerability detection
True 1. issue was not reported - 1. issue was reported - and was an issue 80% 4L
and was not an issue 2. we want the tool to report as many of these as possible 7
o, //
2. the tool correctly did not 3. this is the Signal we are looking for o .
report something as an o
) = 60% .
issue 2
£
: . : 3 50%
False 1. issue was not reported - 1. issue was reported - and was not an issue 2
and was an issue 2. we want the tool to report as few of these as possible - as § 0%
2. the tool failed to detect this these causes Noise in the results and hides the signal
issue 30%

3. this is loss of signal. Warse than random

20%

Using multiple independent/orthogonal tools can be more optimal 10%

than using one tool (see notes for worked example) 0%

0% 10% 20% 30% 40% 50% 60% 70% BO% 90% 100%
False Positive Rate

Development: Software Assurance:

SonarQube

SonarQube is a continuous inspection dashboard tool that measures
source code quality across 7 axes

1. Coding standards—respect coding standards and follow best
practices

2. Potential bugs—eliminate code violations to prevent vulnerabilities

3. Documentation and comments—provide documentation especially
for the Public API, the source code

4. Duplicated code—isolates and refines duplications,

5. Don't Repeat Yourself Complexity—equalizes disproportionate
distributed complexity among components; eliminates complexity if
possible

6. Test coverage—writes unit tests, especially for complex parts of the
software

7. Design and architecture—minimize dependencies

Perspective: | Risk - Sortby:| Lastanalysisdate ~ | | Q search by project name or key 399 projects.

Coverage

Color: Worse of Reliability and Security Size: Lines of Code

Oa Os Oc Ho Oe

e O O

[
20.0% 8
[
40.0% og
60.0%
o
80.0%
o
100% @D
0 104d 208d 313d 417d

Technical Debt

Get quick insights into the operational risks in your projects. Any color but green indicates immediate risks: Bugs or Vulnerabilities that should be examined. A
position at the top or right of the graph means that the longsr-term health of the project may be at risk. Graen bubbles at the bottom-lsft are best.

1.

2.

Development: Software Assurance:

Secure Coding

We developed a Secure Coding training as follows:

a.
b.

Note:

Using (C++, Java, Perl, Android also supported) as the foundation.
Feedback the issues found by the tools (Cppcheck, Coverity, SonarQube, Public Vulnerability (CVE), Manual
Code Reviews)
i. into our Secure Coding training (CWEs)
1. For every CWE, we listed 2 known bad examples from our code - along with a known good
example and guidelines.
ii. into our tools/checkers
1. E.g. check and warning at compile time for deprecated/unsafe functions e.g. strcpy()

CWE stands for Common Weakness Enumeration, and has to do with the vulnerability—not the instance
within a product or system.

CVE stands for Common Vulnerabilities and Exposures, and has to do with the specific instance within a
product or system—not the underlying flaw

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Test: Often and Early: Continuous And Automatic

£
-! Acceptance tests * Exploratory tests é
& Enabler acceptance tests + User acceptance tests
=3 Q2 Alpha and beta tests g
E Test-First E
g Q1 Q4 Q
= Test Continuously g
§ * Unit tests System qualities tests E
| e + Pedormance anc load |+
@ * Security
* Other NFRs
b = Enabler tests

A) |
_ Automated { Tools

) TECHNOLOGY-FACING

Manual

Visible in the code Visible only in the design
Static analysis sweel spol. Mos! likely 10 be found through
Built<in rules make it easy architectural analysis.
o ®» for tools to find these
E without programmer Example: the program
guidance. executes code downloaded
3 as an email attachment
» Example: buffer
overflow.
Possible 10 find with static R both ding
analysis, but customizaton of general security principles
may be required. along with domain-specific
axpartisa.
Example: mishandling =
of credit card ink ! . ol
keys kept in use lor an
unsafe duration.

Continuous Integration Continuous Test Pipeline

¥ 1 Autorevert
o
Stoge't Fix § Fix £} Fix Fix E Fix : Adjust tests o
-k IR] e
IR TS S TS S
sge2 (smat grupings ot pssing ncctcoms |1
4
N
L OeooSannnsm i
' Intervention
ey B b g O
' au‘tomahc‘alggsent to
committers and
test owners
(1ekday) logged and fixed

Integration

2
=
L
[}

4
o2
@ B
[am

+ Pre-commit testing. Done by the developer on his/her own
development machine before committing to the main trunk (at the
bare minimum, includes running “gbar” locally).

(- Commit testing. Happens automatically at the time a developer il

commits new code to the main trunk of the SCM (broken up into

Stage 1 and Stage 2 for easier autorevert). This is now our

“Integrate on Queuing” (IQ) system.

Quick-turn broad-based testing by pillar (runs every 2 hours,
across multiple test machines in parallel). Intended as a quick
feedback loop to find broad-based failures from new commits in
as narrow of a commit window as feasible.

A

A

Same purpose as L2, but on real hardware you can know that the
full build, firmware download, boot, and general capability are
working end-to-end. Runs every 4 hours.

A

Full regression test suite of all automated tests. Kicks off at
midnight daily and provides complete view of the quality of the
system. If passing rate drops substantially, should have seen a

dip in L2 testing (otherwise, update the L2 list). J

caticn Security Monitoring

ioyment Process

Delivery: Continuous Feedback

1. Current: Customer reports an issue,
get logs, diagnose, release a fix

2. Short Term Future: Issue is found
before customer sees or reports it

3. Long Term Future: Predictive
Analytics: Issue is predicted before
it happens and fixed before
customer sees it

Continuous
Feedback

Fearure Request
- Siranegy & Metrics

Requirements
+ SeCurcy Rpquinsrmenes. [SFRUSARY

The DevOps Factory

A F:l:j- E Gowermance * Risk Amossment
+ Education & Securicy Guidance + Abuse Case Development Architecture & Design
DewDps k= & modern software development approach that understanding the Factory + Drganizational Risk Factors + Threat Modeling, Socurty Archiechars
sirives o bring development and operations teams together In the DewDps factory, stakeholders wark collaboratively - Threat Assessmant + Securiy Sorkes - Architecharal Risk Analss
along with other stakeholders to improwe efficiency and acrass the software development lifecycle. All of the cogs. + Scresn Davelopren Tooks - SeCLEity DR sign REquUIFsTeEnes
A . k 2 + SecurefHardened Emarooments Artack Surface Anahysis
autcomes by focusing on shared business goats, DewOps in the wheel portray the work cycling through with constant e ¥
i % : . g - Threat ing
follows and expands on key principles of the Agile software inputs in the d._ﬁereru-. phases of the development. - Vulrerabiiny Anakesis and Faw Hypothesis
development and Lean enginesring movermneants and The end result is & product that represents a cohesive - Sacurity Dusign Aevew
represents a fundamental shift in how large, distributed praduction cycle that has efficiently considersd - Dependencks st Open-source ibrares
enterprise organizations develop and deliver software. everything from business goals, agile

Dewelapment

- Sacure Coding Fraciices

- Zacurity Fooused Code Roview

- Deprecaie Unsade Funcoians

- Perform Securty Unit Testing

- Searic Code Analysis

- Checking of process and pracedures for seoure
coding & iracea bikiy

development practices, and security,
1o [ESTING, Monitmoring and
continued improvement.

By cultivating cross-functional collective engagement in
sofiware development projects throughout the sofbware
development lifecycle [SDLC), DevDps affects the people,
processes, and vechnology of an organization. Devops also
requires adopting and implementing cutting-edge practices
based on the primary tenants of collaborative culture,
auromation, data-driven processes, infrastruciure as code,
and ubiquitous, real-time system monitoring.

Testing

- Security Test Flanining

+ Security Testing

- Fuzz Testing

« Fisk hased secuniy esting
« Forform Dyramic Anakis

- Fensiration Testing

- werdication of Seourity
Implemantation

+ Weriication of Process and
Frocedures

- Dependency Mariicring

A

S
\

The features and benefits of DevOps include
Consistently developing sofraane systems with higher
() gualicy and acruracy of progect budgeting and estmaran

i I Increased wisibility and stakeholder input inta features far
the nest rekase as ns DL\rng\.ﬂhDi‘:l

(AR
N\
N\

AL
\
N

“{‘i};\
\

..:Q
W

Delivery

Engaging stakehelders carly and consistenity
[chroughout the SOLC, leading o fewer defects and incormact

FeqUENETIETS

\1

< Cantainer Sl':lJ'E,'

+ Final Security Reiaw

« Cartify, Apkeasa and Archive

« Secwurity Acceptance Testing
 Trarseon Incidert Resporse Plan

-‘:{é-

Buillding trust between software dewelopment and IT,
enabling organic process Improvement and risk mitigation

Maximizing business value by enabling technical saff o

Deploy
adapt 1o changing requiFBments or endronmencal factors

- Appikcation Security Monioring
* Secure Deployment Frocess

- Serure Emaroniment

- Serure Operational Erablenent

https://www.google.com/search?q=continuity+meaning

The Future

The Last 10 Years

1. It's about the Customer - not the Product

2. Continuous Information across Lifecycle
a. Sharing information (Confluence)
b. Executive Dashboards driven from Jira (not PowerPoint where dreams come
true)
3. Going from “Thinking we’re Agile” to “Being Agile”
a. “We're doing standups, sprints, and using Jira. We're Agile. Right?”
b. Agile at SW team level (Sprint backlog)
c. Agile at Enterprise level (Sprint backlog, Product Backlog, Portfolio Backlog)

The Next 10 Years

1. More Continuity between Requirements - Documentation - Test - SW
a. Less heavy lifting required by people to build software
b. The breadth and depth and rate of change of new technologies means that developers can’t keep pace
c. Value moves further up the stack - the lower layers become commodities

2. From Continuous Delivery to Predictive Delivery
a. More data measured and analysed by machines allowing prediction at each stage in the lifecycle.
b. From Feed-Back to Feed-Forward
c. From Lagging indicators to Leading indicators
d.

3. From People to Machines as Consumers/Customers/Creators
4. From Agile to Agile at Scale

https://en.wikipedia.org/wiki/Predictive_analytics

Recommended Reading: Books

1.
2.
3.
4.

https://www.amazon.co.uk/Hands-Security-DevOps-continuous-deployment/dp/1788995503
https://www.amazon.co.uk/Hands-Security-DevOps-continuous-deployment/dp/1788995503
https://www.amazon.co.uk/Agile-Application-Security-Laura-Bell/dp/1491938846
https://www.amazon.co.uk/Agile-Application-Security-Laura-Bell/dp/1491938846
https://www.amazon.co.uk/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339
https://www.amazon.co.uk/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339
https://www.amazon.co.uk/Practical-Approach-Large-Scale-Agile-Development/dp/0321821726
https://www.amazon.co.uk/Practical-Approach-Large-Scale-Agile-Development/dp/0321821726

Recommended Reading: Deliver Value

at Scale: SAFe

Agile was developed with small
teams in mind.
There are several approaches to
scaling agile per

. Of
these ScaledAgileFramework
(SAFe) is the most mature and
supported.
Problems of Scale:
Interdependencies between

teams, components, deliverables.

Capacity planning.

SAFe® for Lean Enterprises

(Essential SﬁFe\ rl.arge Solution SAFQ (Portfnlio SAre\erull SAFe\

g A 5 —
& [& a8 Iy £ :;15'5'»_5 PORTFOLIO
Enterprise Government Epic E;::l:?ﬁ“ 2 R
Owners itect Backlog i s
: s Portfoli i Management
Metrics (== Strategic o o
= Themes Canvas ‘ Lean Budgets KPlIs
Shared = Guardrails Value Streams
Services | |
Conti Delivery Pipeline PROGRAM
» 80
i e e souion
CoP . Business L ~] Customer &
PY a M Owners 4 iy o DevOps
Milestones System Product = & e alhe ey Rainass S Cikie ﬁ DevOps and
Arch/Eng Mgmt — on Demand « Automalion Release on
ap ‘ & | D Pl Objectives - Lean Flow “w Demand
; - = = (&) C/\ * Measurement
Roadmap RTE (- i Dol = - Recavery
£ HFits | s ETm |
oo Backlog 2 Feature Feature | 2 Feature | ad 1] Architectural
) £ £ | Runway
Vision 5 iy b e — 5
a Y o
< VORI P = ") g i - TEAM
* Execute (o =
Systom | M ot), e B FO |0 D D HEDD DD | N
e Owner Sorum - Retro £ : Em E=m 2 - = Team and
lil) - E) E - Technical
Y B soum = B 8o nb|n Agility
= Fw Master = (= g
Lean UX HW ¥ T NFRs
Agile Teams Kanban Backleg
=, Core Lean-Agile = SAFe *===) Implementation ®= SAFe Program [k
1_! Values Mindset = Principles (==_. Roadmap @ Consultant

Lean-Agile Leadership

https://www.scaledagileframework.com/
https://app.box.com/s/fqt8bub0l2ac2fhh76zye7bnky90gqui

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

