
ℹ This report is as-is from Gemini 2.5 Deep Research ℹ 
 

Feature Comparison and Analysis of Leading AI IDEs: Cursor, 
Windsurf, Roo Code, and GitHub Copilot 
1. Executive Summary 

The rapid evolution of artificial intelligence has profoundly reshaped the landscape of 
software development, giving rise to sophisticated AI-powered Integrated 
Development Environments (IDEs). This report provides a comparative analysis of four 
prominent AI IDEs: Cursor, Windsurf, Roo Code (Roo Cline), and GitHub Copilot. Each 
tool presents a distinct approach to integrating AI, offering varying levels of code 
assistance, agentic autonomy, contextual understanding, and integration capabilities. 

Cursor and Windsurf are positioned as full-fledged AI-native IDEs, often built as forks 
of Visual Studio Code, aiming for deep, integrated AI experiences. In contrast, GitHub 
Copilot and Roo Code function primarily as extensions, augmenting existing IDEs like 
VS Code with AI functionalities. This architectural divergence significantly influences 
their feature sets, user experience, and overall value proposition. 

The analysis reveals a clear progression in AI assistance, moving beyond simple 
autocomplete to intent-driven code generation and autonomous multi-step task 
execution. While AI IDEs offer substantial productivity gains, they necessitate human 
oversight, often functioning as advanced "junior developers" rather than complete 
replacements for human programmers. The market is also segmented by pricing 
models, with subscription-based services (Cursor, Windsurf, GitHub Copilot) offering 
predictable costs versus the pay-as-you-go model of Roo Code, which provides 
greater flexibility but variable expenses. Ultimately, the optimal choice among these 
tools depends on a developer's specific workflow, project complexity, budget 
considerations, and preference for integrated environments versus extensible plugins. 

2. Introduction to AI IDEs in Modern Software Development 

The landscape of software development is undergoing a significant transformation, 
driven by the rapid advancements in artificial intelligence. AI-powered Integrated 
Development Environments (IDEs) are at the forefront of this evolution, fundamentally 
changing how developers write, debug, and deploy code. These tools leverage large 
language models (LLMs) to provide intelligent assistance, ranging from predictive 
code completion to autonomous agentic capabilities. The burgeoning market for 
AI-assisted coding has garnered significant attention from tech startups and venture 



capitalists, particularly with the enhanced capabilities of models like Claude 3.5.1 

This report delves into four prominent AI IDEs: Cursor, Windsurf, Roo Code (Roo Cline), 
and GitHub Copilot. While Cursor and Windsurf are positioned as full-fledged 
AI-native IDEs, often built as forks of existing popular editors, GitHub Copilot and Roo 
Code primarily function as extensions that augment the capabilities of established 
IDEs like VS Code.2 This architectural distinction profoundly influences their 
integration depth, feature sets, and overall user experience. 

The market for AI IDEs exhibits a clear segmentation based on their foundational 
design. Solutions like Cursor and Windsurf are developed as comprehensive, AI-first 
IDEs, often forking from popular editors like VS Code to achieve deep integration of AI 
into their core functionalities.2 This approach aims to provide a cohesive, end-to-end 
AI-native development environment, potentially requiring users to adopt a new 
primary tool. Conversely, GitHub Copilot functions as a VS Code extension 2, and Roo 
Code operates as an autonomous coding agent integrated directly within the editor.4 
These tools prioritize convenience by building upon existing user familiarity with 
established IDEs, augmenting their capabilities with AI without demanding a complete 
shift in the developer's primary environment. This divergence in design strategy 
suggests that vendors are targeting distinct user preferences: those willing to 
embrace a new environment for maximal AI integration versus those who prefer to 
enhance their current setup. This trend implies a future where AI capabilities will 
become standard across all IDEs, whether through native, deep integration or robust, 
flexible extensions, catering to a diverse developer base. 

3. Feature Deep Dive and Comparative Analysis 

This section systematically compares the core AI capabilities and other essential 
features across Cursor, Windsurf, Roo Code, and GitHub Copilot. 

Table 1: Key Feature Comparison Matrix 

 
Feature 
Category 

Cursor Windsurf Roo Code (Roo 
Cline) 

GitHub Copilot 

Core AI 
Assistance 

    

AI Code 
Completion 

Multi-line, 
context-aware 

Supercomplete 
(intent 

Yes 4 Autocomplete, 
next edit 



(Copilot++) 6 prediction) 7 suggestions 8 

Inline Code 
Generation 

Yes (Cmd+K) 6 Inline AI 7 Yes 9 Copilot Edits 
(multi-file) 2 

Code 
Refinement/Opti
mization 

Intelligent Code 
Refinement 
(Smart Rewrites) 
6 

Yes 3 Refactor & 
Debug existing 
code 4 

AI-generated 
code review 
suggestions 8 

Conversational 
AI 

    

Chat Features Built-in 
Codebase Chat 
6 

Chat Mode 
(Q&A, 
debugging) 3 

Natural 
language 
communication 
9 

Copilot Chat 
(IDE, web, 
mobile, CLI) 8 

Codebase Q&A Code Base 
Questions 6 

Yes 
(context-aware) 
3 

Answer 
Questions about 
your codebase 4 

Yes 
(repository/file 
context) 11 

Agentic & 
Workflow 
Automation 

    

Agentic 
Capabilities 

Agent Mode, 
Edit Mode 2 

Cascade (Agent 
Mode, high-level 
prompts) 3 

Autonomous 
coding agent, 
multi-step 9 

Copilot Coding 
Agent (PRs, 
issues) 8 

Browser 
Automation 

No specific 
mention 

Windsurf 
Previews (UI 
tweaks) 3 

Yes (launch app, 
click, type, 
scroll, 
screenshots) 9 

No specific 
mention 

Terminal 
Command 
Execution 

No specific 
mention 

AI Terminal 7 Yes (install, run 
builds, tests) 9 

Copilot in the 
CLI 8 

Integrated 
Deployment 

No specific 
mention 

Integrated 
Deployment 

No specific 
mention 

Copilot 
Workspace (PR 



(Beta) 3 refinement) 8 

Code Review/PR 
Summaries 

Commit 
message 
generation 12 

Windsurf 
Reviews (Teams 
plan) 13 

Custom Modes 
(Code 
Reviewers) 9 

AI-generated 
code review, PR 
summaries 8 

Documentation 
Assistance 

Documentation 
and Refactoring 
Assistance 6 

Yes 7 Write & Update 
documentation 4 

Copilot Text 
Completion (PR 
descriptions) 8 

Contextual 
Understanding 

    

Whole 
Codebase 
Awareness 

Exceptional 
context 
awareness 14 

Indexing Engine 
(entire 
codebase) 7 

Context 
Mentions (@file, 
@folder) 9 

Improved by 
semantic code 
search indexing 
11 

Context 
Persistence 

Multi-tab 
approach (can 
be chaotic) 12 

Memories 
system 7 

Session-specific 
context issues 15 

Conversational 
context 11 

Customization 
& Flexibility 

    

Model Flexibility 
(BYOK) 

4 models 
available, can 
use Gaia node 6 

Flexible AI 
Model Selection 
(SWE-1, 3rd 
party) 3 

Any 
OpenAI-compati
ble, custom 
API/model 9 

GitHub Models 
(public preview) 
8 

Custom 
Modes/Personas 

No specific 
mention 

AI Rules 7 Yes (Code, 
Architect, Ask, 
User-Created) 9 

Copilot Custom 
Instructions 8 

Autonomy 
Control 

Agent Mode, 
Edit Mode 2 

Write Mode vs. 
Chat Mode 3 

Manual, 
Auto-Approve, 
Hybrid 9 

Edit Mode, 
Agent Mode 8 

IDE Integration     



Primary 
Integration 

Standalone IDE 
(fork of VS 
Code) 2 

Standalone IDE 
(fork of VS 
Code) 2 

VS Code 
extension 5 

VS Code, Visual 
Studio, 
JetBrains, etc. 8 

JetBrains 
Support 

No current plans 
19 

Plugin available 
20 

No specific 
mention 

Plugin available 
20 

Extension 
Ecosystem 

VS Code 
extensions 
compatible 22 

MCP Support 
for custom tools 
21 

MCP (Model 
Context 
Protocol) 4 

GitHub Copilot 
Extensions 8 

Pricing Model     

Pricing 
Structure 

Subscription 
(Hobby, Pro, 
Business) 23 

Subscription 
(Free, Pro, 
Teams, 
Enterprise) 13 

BYOK 
(Pay-as-you-go 
for API tokens) 5 

Subscription 
(Pro, Pro+, 
Business, 
Enterprise) 27 

Free Tier 
Availability 

Yes (limited) 23 Yes (limited 
credits) 13 

No (BYOK, but 
free models 
possible) 26 

Yes (limited 
experience) 27 

3.1. AI-Powered Code Assistance: Completion, Generation, and Refinement 

All four AI IDEs offer fundamental code assistance, but their sophistication varies 
significantly. Cursor, for instance, provides "AI Code Completion" that goes beyond 
single-word suggestions, predicting "multiple lines in a single go" to complete entire 
functions.6 It also features "Intelligent Code Refinement" (Smart Rewrites), which 
functions as a "code mentor" by offering valuable suggestions to optimize and 
improve code quality.6 Cursor's "Copilot++" is highlighted as an enhanced version of 
GitHub Copilot, providing more advanced suggestions.6 

Windsurf introduces "Supercomplete," a feature that transcends traditional 
autocompletion by predicting the developer's "intent" rather than merely the next 
word or line. This allows it to generate complete functions, including correct 
docstrings and functionality, tailored to the context of the existing code and prior 
actions.7 Windsurf also offers "Inline AI" for precise modifications to specific code 
lines, enabling developers to generate docstrings or refactor sections without 
affecting the rest of the codebase.7 User feedback often notes Windsurf's code 
completion as "smart and fast," even "very fast compared to its rivals like copilot".30 



Roo Code is capable of generating code from natural language descriptions, 
refactoring existing code, and debugging issues.4 GitHub Copilot offers standard 
"Code completion" with "autocomplete-style suggestions" in various supported IDEs, 
along with "next edit suggestions" that predict the location of a developer's next likely 
edit.8 Its "Copilot Edits" feature further allows for natural language-driven changes 
across multiple files.2 

A notable progression in AI code assistance is observed, moving from basic 
single-token autocompletion to more sophisticated, multi-line, function-level, and 
even "intent-driven" code generation. Initially, AI code assistants primarily offered 
"autocomplete-style suggestions".8 However, Cursor evolved to "predict multiple lines 
in a single go" 6, and Windsurf introduced "Supercomplete," which "predicts your 
intent" and generates complete functions with docstrings.7 This progression indicates 
a significant shift in AI capabilities: from merely predicting the next token based on 
syntax to understanding the developer's higher-level goal and generating larger, more 
functional blocks of code. This implies that AI is moving beyond being a simple typing 
aid to becoming a more proactive coding partner that can anticipate and fulfill 
complex coding intentions, thereby reducing boilerplate and cognitive load for 
developers. 

Despite these advanced generation capabilities, user feedback consistently highlights 
the need for manual review, optimization, and refinement of AI-generated code, 
especially for complex tasks. Cursor's AI-generated code "Requires Manual Review for 
Accuracy" 22, and its suggestions can range from "brilliant to baffling".12 For Windsurf, 
developers are advised to "Iterate and Refine: Don't expect perfection on the first try... 
Treat it like a junior developer you're guiding".18 A Cursor user even describes the 
experience as working with a "fresh grad with solid knowledge, zero experience".32 
This recurring sentiment across different tools and user experiences strongly 
indicates that while AI can rapidly generate code, it still lacks the nuanced 
understanding, critical thinking, and robust error-checking capabilities of an 
experienced human developer. Therefore, the human-in-the-loop remains crucial for 
quality assurance, debugging, and complex problem-solving, implying that AI IDEs are 
powerful productivity multipliers but not replacements for skilled programmers. 

3.2. Agentic Capabilities and Workflow Automation 

The evolution of AI IDEs extends beyond simple code assistance to more autonomous, 
multi-step agentic capabilities and broader workflow automation. Windsurf's 
"Cascade" agent is a prime example, capable of understanding an entire project and 
generating, running, and debugging code "across files".3 Its "Agent Mode" can take a 



high-level prompt like "build me this app" and autonomously execute a series of 
steps.3 Windsurf also offers "Integrated Deployment (Beta)," generating necessary 
configuration files and instructions to get an application live, potentially saving 
significant time and effort.3 

Roo Code is explicitly an "autonomous coding agent" that lives in the IDE, capable of 
creating and editing files, executing commands, and even automating browser 
actions, though it requires "your permission every step of the way".9 It can "Automate 
repetitive tasks" 4 and provides flexible autonomy settings: "Manual Approval," 
"Autonomous/Auto-Approve," and "Hybrid" modes.9 A unique aspect of Roo Code is 
its ability to create an "entire team of agents with deeply customized prompts," such 
as QA Engineers, Product Managers, and Code Reviewers, each with tailored prompts 
and optional tool restrictions.9 It also extends capabilities via "MCP (Model Context 
Protocol)" for unlimited custom tools, allowing integration with external APIs or 
databases.4 

GitHub Copilot's "Copilot coding agent (public preview)" is an autonomous AI agent 
that can make code changes, be assigned GitHub issues, and create pull requests for 
review.8 Its "Agent Mode" allows Copilot to autonomously edit code for complex tasks, 
determining which files to change and iterating to resolve issues until the task is 
complete.8 "Copilot Workspace (public preview)" provides a Copilot-enabled 
environment for refining pull requests, validating changes, and integrating 
suggestions from reviewers.8 Cursor also features "Agent Mode" and "Edit Mode" for 
enhanced control over proposed edits 2, though user feedback notes limitations where 
imprecise instructions can lead to unintended changes in random files.12 

The increasing adoption of agentic features signifies a major shift in AI IDE 
functionality. Tools are moving beyond passive code suggestions to active, multi-step 
agentic capabilities that can plan, execute, and even debug across multiple files. 
Windsurf's "Cascade" is described as an agent capable of generating, running, and 
debugging code across files, even taking high-level prompts like "build me this app" 
and executing a series of steps.3 Roo Code is explicitly an "autonomous coding agent" 
that offers granular control over its actions through "Manual Approval," 
"Autonomous/Auto-Approve," and "Hybrid" modes.9 GitHub Copilot also introduces a 
"Copilot coding agent" that can "make code changes" and create pull requests.8 The 
emphasis on user approval and review, particularly in Roo Code's hybrid modes and 
Copilot's pull request creation, indicates that while AI autonomy is advancing, 
developers are not yet comfortable with full, unchecked AI action. This suggests that 
the current state of agentic AI is focused on assisted autonomy, where AI takes 
initiative but human oversight remains crucial for reliability, quality, and control, 



especially given the "junior developer" analogy discussed previously. 

Roo Code's unique ability to allow users to create "an entire team of agents with 
deeply customized prompts" for specialized roles (e.g., QA Engineers, Product 
Managers, Code Reviewers) represents a conceptual advancement beyond a single AI 
assistant.9 This capability, detailed in Roo Code's custom modes, enables the 
definition of multiple AI personas, such as "QA Engineers who write thorough test 
cases" or "Product Managers who excel at user stories and feature prioritization".9 
This goes beyond a single, general-purpose AI assistant and envisions a collaborative 
AI ecosystem within the IDE, where different AI agents handle specialized tasks across 
the development lifecycle. This implies a future where developers can orchestrate a 
"virtual team" of AI specialists, each optimized for a specific development phase or 
role, leading to more comprehensive and integrated AI assistance. This represents a 
significant conceptual advancement, moving towards AI-powered workflow 
orchestration rather than just individual task automation. 

3.3. Contextual Understanding and Codebase Awareness 

A critical aspect of AI IDEs is their ability to understand the broader project context, 
not just isolated lines or files. Cursor claims "Exceptional context awareness that 
understands your entire repository" 14 and allows "Code Base Questions" to clarify 
complex concepts or locate functions.6 Its technical approach involves "chunking 
code and creating embeddings, which are then used for vector search to provide 
context".1 However, this method primarily grasps "semantic meaning rather than 
logical structures" in the code and involves uploading local code to cloud services, 
which may raise compliance concerns for some organizations.1 

Windsurf's "Cascade agent fully understands your project" and its "Indexing Engine" 
retrieves context from the "entire codebase, not just the files you have recently 
interacted with".3 This significantly improves the quality of autocomplete suggestions 
and chat responses, particularly for large projects.7 Its "Memories system" further 
allows it to "persist context across conversations," ensuring continuity in interactions.7 

Roo Code offers "Intelligent Context Condensing" to manage context and "Context 
Mentions" (e.g., @file, @folder, @problems, @url, @git) to explicitly provide additional 
context to the AI.4 However, user feedback indicates that "Each session has its own 
context," which can be "frustrating if your codebase is complicated".15 Additionally, its 
"memory bank" can sometimes get "stuck on the past," potentially leading to 
repetitive or unhelpful suggestions.16 

GitHub Copilot, while proficient at understanding code context, is noted for a "Limited 



Understanding of Context" regarding "business logic or specific project 
requirements".34 Its ability to answer questions in a repository context is improved 
when the repository has been "indexed for semantic code search".11 

While all AI IDEs strive for comprehensive codebase awareness, the methods and 
effectiveness of context understanding vary significantly, presenting a complex 
challenge that balances depth of understanding, breadth of coverage, and 
computational cost. Windsurf explicitly highlights its "Indexing Engine" that "retrieves 
context from your entire codebase" 7, suggesting a broad, deep approach. Cursor also 
claims "Exceptional context awareness" 14 but its "chunking code and creating 
embeddings" method primarily grasps "semantic meaning rather than logical 
structures".1 GitHub Copilot is noted for "Limited Understanding of Context" in terms 
of business logic.34 Roo Code's "Intelligent Context Condensing" aims to manage 
context 33, but user feedback points to issues with its "memory bank" getting "stuck 
on the past".16 This spectrum of approaches reveals that achieving truly deep, 
efficient, and cost-effective codebase understanding is a significant technical hurdle. 
For BYOK models like Roo Code, context directly impacts cost, creating a tension 
between providing enough context for accurate AI responses and managing token 
consumption. This implies that context management is not just a feature but a critical 
competitive battleground, balancing AI performance with resource efficiency. 

3.4. Debugging, Error Correction, and Code Review 

AI IDEs aim to streamline the debugging and code review processes, which are 
traditionally time-consuming aspects of software development. Cursor offers "Error 
Correction and Debugging" capabilities 6 and provides a "Debug with AI" prompt that 
appears in the terminal whenever an error occurs.12 However, user experiences are 
mixed; while the AI sometimes "nails the issue right away," it can also "spit out generic 
advice" or suggest "poorly written code" for more complex bugs.12 

Windsurf's "Cascade agent" is designed to "generate, run, and debug code across 
files" 3, and it includes an "AI terminal" where users can ask Windsurf to generate code 
or troubleshoot and fix errors directly.7 This integration aims to streamline the 
development process by combining coding and debugging in one place.7 

Roo Code actively reacts to linting or compile-time errors automatically, such as 
missing imports or syntax errors.4 It monitors terminal output and adapts its actions if 
errors are detected, and can collect console logs during browser automation to debug 
runtime or UI/UX issues.9 

GitHub Copilot offers AI-generated code review suggestions to help developers write 



better code and improve overall quality.8 It can provide feedback on selected code or 
conduct a deeper review of all changes.35 Copilot also generates "Pull Request 
Summaries," which are AI-powered summaries of changes made in a pull request, 
detailing affected files and highlighting areas for reviewer focus.8 Its "Copilot 
Workspace" is a dedicated environment for refining pull requests and validating 
changes.8 

The integration of AI into debugging and code review processes marks a significant 
step towards a more automated quality assurance layer in software development. By 
proactively identifying potential issues, suggesting fixes, and summarizing changes, AI 
tools can reduce the manual effort and time spent on these critical tasks. While AI's 
ability to "nail the issue" for common problems is a clear advantage, the variability in 
its performance for complex or novel bugs, as observed with Cursor 12, indicates that 
AI is a powerful assistant rather than a definitive solution. The need for human 
validation of AI-generated feedback in code reviews 35 further reinforces this. This 
implies that AI is transforming quality assurance by automating routine checks and 
providing initial insights, freeing human developers to focus on more intricate logical 
flaws, architectural considerations, and the nuanced aspects of code quality that 
currently elude AI's full comprehension. 

3.5. IDE Integration and Ecosystem 

The integration strategy of each AI IDE significantly impacts its usability and adoption 
within existing developer workflows. 

Cursor is built as a standalone IDE, forking from Visual Studio Code. This design 
choice means it retains VS Code's familiar interface, supporting its extensions, 
themes, and keyboard shortcuts, which facilitates a smooth transition for existing VS 
Code users.12 However, this standalone nature also means that Cursor does not 
currently plan to integrate as a plugin into other IDEs like JetBrains, as its developers 
believe deeper AI integration requires a dedicated environment.19 Cursor can also be 
configured to use custom LLM backends, such as a Gaia node, allowing organizations 
to leverage their proprietary code repositories and maintain data privacy.17 

Windsurf (formerly Codeium) functions as both a standalone lightweight editor and 
an AI assistant that can integrate with other IDEs.14 Its interface is often compared to 
VS Code, which is generally seen as a positive attribute.3 Windsurf provides plugins for 
popular IDEs like VS Code, JetBrains, and Jupyter Notebooks, making it versatile for 
developers working across different programming environments.30 It supports MCP 
(Model Context Protocol), allowing connection with custom tools and services.21 While 
it can integrate with other IDEs, manual setup is often required, and feature overlap 



with other AI assistants like Copilot can lead to conflicts, necessitating careful 
configuration.14 

Roo Code (Roo Cline) is primarily a VS Code extension, integrating directly into the 
developer's existing VS Code environment.5 This allows users to leverage all their 
familiar tools and settings without requiring additional cloud resources for direct file 
manipulation.5 Roo Code is open-source, fostering community contributions and 
customizations.5 A key feature is its MCP server integration, which allows for extension 
with additional capabilities through custom tools, APIs, and databases.4 It supports a 
wide range of OpenAI-compatible and local models, offering flexibility in AI backend 
choice.9 

GitHub Copilot is a VS Code extension that also works across multiple IDEs, including 
Visual Studio, JetBrains IDEs, Azure Data Studio, Xcode, Vim/Neovim, and Eclipse.8 
This broad compatibility makes it highly accessible for developers using diverse 
environments. GitHub Copilot Extensions further expand its capabilities by integrating 
external tools and services directly into Copilot Chat, allowing natural language 
interaction with tools like Docker or Sentry.8 These extensions can be developed 
privately for internal tools or shared publicly via the GitHub Marketplace.38 

The varying integration strategies highlight a spectrum: from native, AI-first IDEs to 
highly extensible plugins. Cursor and Windsurf represent the former, aiming for deep 
AI integration by controlling the entire development environment. This approach can 
lead to a more cohesive AI experience but may require developers to switch from their 
preferred IDEs.19 Conversely, GitHub Copilot and Roo Code exemplify the latter, 
prioritizing seamless integration into existing popular IDEs like VS Code. This allows 
developers to augment their current workflows with AI without a significant learning 
curve or disruption.22 The existence of this integration spectrum indicates that the 
market is catering to different developer preferences. Some developers prioritize a 
fully integrated, AI-centric environment, while others value the flexibility and familiarity 
of their existing IDEs, preferring AI capabilities delivered as modular extensions. This 
dynamic suggests that the future of AI IDEs will likely involve both specialized 
AI-native environments and robust AI plugins that can adapt to a wide array of existing 
development setups. 

3.6. Pricing Models and Cost Implications 

The pricing models for these AI IDEs vary significantly, impacting cost predictability 
and flexibility for users. 

Cursor operates on a subscription model with distinct tiers. The "Hobby" plan is free 



but offers limited usage, including 200 completions and 50 requests per month, along 
with a two-week Pro trial.23 The "Pro" plan costs $20 per month, providing unlimited 
completions and 500 requests monthly.23 For teams, the "Business" plan is $40 per 
user per month, adding features like enforced privacy mode, centralized billing, and 
SSO.23 A key advantage highlighted is that all generated code is owned by the user 
and can be used commercially.23 

Windsurf (formerly Codeium) also uses a subscription model with a credit-based 
system. Its "Free" plan offers 25 prompt credits per month (equivalent to 100 GPT-4.1 
prompts) and includes unlimited base Cascade usage and Fast Tab Completions.13 The 
"Pro" plan is $15 per month for 500 prompt credits, with additional credits available at 
$10 for 250.13 "Teams" costs $30 per user per month, and "Enterprise" starts at $60 
per user per month, offering higher credit allowances and enterprise-specific features 
like SSO and RBAC.13 User feedback indicates that Windsurf's recent pricing revamp, 
which charges only for prompts regardless of the number of actions performed by the 
agent, has been well-received for simplifying cost anticipation and earning goodwill.40 

Roo Code (Roo Cline) stands out with a "Bring Your Own Key" (BYOK) model, meaning 
there is no direct subscription fee for the IDE itself. Instead, users pay for the API 
tokens they consume with their chosen AI models.5 This model offers significant 
flexibility, as users can connect to various OpenAI-compatible APIs or local models 
(e.g., LM Studio/Ollama).9 However, this flexibility comes with variable and potentially 
high costs. For example, testing features reportedly consumed around $50 in tokens 5, 
and extended use can incur costs of $0.10 to $0.40 per prompt, with one user 
reporting $68 for 12 hours of non-stop use.26 The cost can be influenced by "context 
creep," where sending the entire context with each prompt causes token usage to 
balloon.26 Strategies for cost mitigation include using free models (e.g., Google 
Gemini's free credits for architectural tasks), strategic model switching, and explicitly 
restricting token usage in prompts.26 

GitHub Copilot offers a tiered subscription model for individuals, organizations, and 
enterprises. For individuals, "Copilot Pro" is $10 per month or $100 per year, while 
"Copilot Pro+" is $39 per month or $390 per year.27 "Copilot Business" is $19 per user 
per month for organizations, and "Copilot Enterprise" pricing varies for larger 
organizations.27 A free tier with a limited experience is also available.27 Premium 
requests, which use more advanced models or features, count against a monthly 
allowance, with additional requests billed at $0.04 USD each.28 

The differing pricing models highlight a fundamental trade-off: cost predictability 
versus flexibility. Subscription-based services like Cursor, Windsurf, and GitHub 



Copilot offer predictable monthly expenses, which can be advantageous for 
budgeting, especially for teams or enterprises.13 However, these models may come 
with usage limits or tiered access to premium features. In contrast, Roo Code's 
pay-as-you-go model provides greater flexibility by allowing users to choose their AI 
models and only pay for what they consume.5 This approach can be cost-effective for 
low usage but can lead to significantly higher and less predictable costs for intensive 
use, particularly due to factors like context size and model choice.26 This suggests that 
developers must weigh the importance of budget predictability against the desire for 
granular control over AI model selection and usage, as the choice directly impacts 
financial outlay. 

The discussion around Roo Code's costs often raises a point about the "cost of 
quality" in AI-assisted coding. Users sometimes find that while subscription services 
might fail to complete complex tasks, Roo Code, when paired with high-quality, albeit 
more expensive, models, successfully delivers.26 This indicates that the perceived 
value of AI assistance can outweigh its direct monetary cost, especially when it saves 
significant human development time. The observation that bundled subscription 
services might use lower-quality models or aggressively compact context to reduce 
their own API costs 41 further supports this. This implies that developers who prioritize 
task completion and higher quality output may find the investment in more capable, 
pay-as-you-go models justifiable, viewing AI-generated code as a cost-saving 
measure rather than merely an expense.26 

3.7. User Experience and Developer Feedback 

User experience and developer feedback provide crucial qualitative insights into the 
practical application and perceived value of each AI IDE. 

Cursor is generally praised for its familiar VS Code-like user interface, which reduces 
the learning curve for existing VS Code users.12 Its intelligent code completion is noted 
for being effective, and the "Debug with AI" prompt is appreciated for its immediate 
availability.12 Features like automatic commit message generation are also seen as 
productivity boosters.12 However, Cursor faces significant criticisms. Users report UI 
clutter from numerous AI-related buttons and popups.12 The AI's consistency is a 
concern, with suggestions ranging from "brilliant to baffling".12 Its "Agent Mode" can 
be problematic if instructions are imprecise, leading to unintended changes.12 
Shortcut conflicts, such as Command+K being remapped, cause friction for long-time 
VS Code users.12 Performance issues, including UI lag on large files, increased crashes 
with heavy AI usage, and high memory consumption (especially in WSL), are 
frequently reported.32 A "refusal incident" where the AI refused to generate code 



raised concerns about trust and reliability.42 Furthermore, Linux users have reported 
poor integration and compatibility quirks.42 

Windsurf offers a VS Code-like interface, which contributes to its ease of use and 
integration with various IDEs.3 Its code autocompletion is described as "smart and 
fast," significantly speeding up coding, particularly for tedious or large projects.30 It is 
considered helpful for learning new languages or frameworks.30 Despite these 
positives, Windsurf has received criticism for occasional irrelevant suggestions, 
especially in complex code blocks, which can interrupt workflow.30 Some users note 
issues with context retention and a perceived lack of features compared to 
competitors like Copilot, such as the ability to integrate external chat agents for 
GitHub or Jira APIs.30 There have also been reports of buggy plugins, loading issues, 
connection errors, and, in at least one severe case, unreliable service and poor 
customer support involving unauthorized charges.30 

Roo Code (Roo Cline) is appreciated for its open-source nature, direct VS Code 
integration, and transparent workflow where changes are visible in the editor.5 Its 
customizable modes and prompt templates are highly valued for adapting to specific 
workflows like code reviewing or testing.5 Users often find Roo Code and Cline to be 
superior in code quality for "serious work" compared to other AI tools, even if they 
cost more.43 However, significant limitations include high token consumption, leading 
to potentially high costs.5 It supports only one session per VS Code window, limiting 
parallel tasks.5 Performance can vary based on codebase complexity and prompt 
quality.5 A critical issue is context loss if the model is changed during a task, requiring 
manual re-prompting.5 It also does not inherently test changes unless explicitly 
prompted.5 

GitHub Copilot is widely praised for boosting efficiency and productivity, significantly 
speeding up coding and reducing time on boilerplate tasks and error correction.34 It is 
seen as a valuable learning assistant, introducing new patterns, libraries, and best 
practices.34 Its wide language support and seamless integration with various IDEs are 
strong advantages.34 However, concerns include a potential dependency risk, where 
heavy reliance may diminish developers' problem-solving skills.34 Code quality 
variability means suggestions are not always optimal or relevant.34 Privacy and 
intellectual property concerns arise from Copilot learning from public code 
repositories.34 There is also a learning curve for effectively utilizing its suggestions, 
and its understanding of specific business logic can be limited.34 

The feedback highlights a recurring trade-off between autonomy and control. While AI 
IDEs offer increasingly autonomous capabilities, developers consistently express the 



need to maintain oversight and control over the AI's actions. For instance, Roo Code 
offers flexible autonomy settings, from "Manual Approval" to "Auto-Approve" 9, 
indicating a design choice that acknowledges this user preference. Similarly, GitHub 
Copilot's agent mode creates pull requests for review rather than directly committing 
changes.8 User frustrations with Cursor's "Agent Mode Limitations" where imprecise 
instructions lead to unintended changes 12 further underscore that developers value 
precise control. This suggests that the most effective AI IDEs strike a balance, 
empowering AI to perform complex tasks while providing clear mechanisms for human 
intervention, review, and correction, ensuring that the developer remains in the 
driver's seat for critical decisions and quality assurance. 

Another observation points to a "polish" versus "power" spectrum. Tools like GitHub 
Copilot and Cursor, while sometimes criticized for performance or AI consistency, 
generally offer a more polished user experience and broader ecosystem integration.2 
In contrast, tools like Roo Code, despite their higher cost and occasional rough edges 
in UX, are often lauded by experienced users for their superior "power" in handling 
complex tasks and producing higher code quality when paired with advanced 
models.43 This indicates that developers prioritize different aspects based on their 
needs: some prefer a smooth, intuitive, and broadly compatible experience, even if it 
means slightly less powerful AI, while others are willing to tolerate a less polished 
interface and higher costs for more robust and customizable AI capabilities, especially 
for "serious work".43 This implies that the market for AI IDEs is maturing, with different 
products carving out niches based on whether they optimize for user-friendliness and 
broad appeal or for deep, customizable AI power for advanced users. 

4. Conclusions and Recommendations 

The landscape of AI IDEs is dynamic, with Cursor, Windsurf, Roo Code, and GitHub 
Copilot each presenting compelling features and distinct philosophies. The analysis 
underscores a clear trend: AI is rapidly evolving from a simple code completion tool to 
a sophisticated, intent-driven agent capable of multi-step task execution, debugging, 
and even deployment assistance. This progression significantly enhances developer 
productivity by automating boilerplate and complex workflows. 

However, a critical understanding that emerges is the continued necessity of human 
oversight. Despite advancements, AI-generated code and actions require diligent 
review and refinement. The analogy of AI as a "junior developer" holds true across 
these platforms; they are powerful accelerators but not infallible replacements for 
experienced human programmers. The tension between AI autonomy and human 
control is a central design consideration, with tools offering varying degrees of 



approval mechanisms. 

The market segmentation between full-fledged AI-native IDEs (Cursor, Windsurf) and 
extensible plugins (Roo Code, GitHub Copilot) reflects diverse developer preferences. 
The former promises a deeply integrated AI experience, while the latter prioritizes 
compatibility with existing workflows. Similarly, pricing models present a choice 
between predictable subscription costs (Cursor, Windsurf, GitHub Copilot) and the 
flexible but potentially higher, variable costs of a BYOK model (Roo Code). The "cost of 
quality" becomes apparent, as some developers are willing to pay more for superior AI 
performance in complex scenarios. 

Recommendations: 

1. For Developers Prioritizing Seamless Integration and Broad Compatibility: 
GitHub Copilot is an excellent choice due to its wide IDE support, robust feature 
set, and extensive extension ecosystem. Its subscription model offers predictable 
costs, making it suitable for general use and teams. 

2. For Developers Seeking an AI-Native Environment with Strong Contextual 
Understanding: Windsurf offers a compelling AI-first IDE experience with its 
Cascade agent and comprehensive codebase awareness. Its focus on integrated 
deployment and live previews makes it ideal for web development and 
project-level automation. 

3. For Power Users and Teams Requiring Deep Customization and Agentic 
Control: Roo Code stands out with its BYOK model, multi-model support, and the 
unique ability to create "teams of agents." While it demands more active context 
management and can be costly, its flexibility and power for complex, customized 
workflows are unparalleled. 

4. For Developers Comfortable with a VS Code Fork and AI-Assisted 
Refinement: Cursor provides a familiar environment for VS Code users, excelling 
in intelligent code completion and refinement. However, users should be mindful 
of its performance on very large codebases and the need for manual review of AI 
suggestions. 

5. For All Users, Regardless of Tool Choice: Maintain a critical perspective on 
AI-generated code. Always review, test, and optimize AI suggestions to ensure 
accuracy, maintainability, and adherence to project standards. Leverage AI as a 
productivity multiplier, allowing it to handle repetitive tasks and provide initial 
drafts, thereby freeing human developers to focus on higher-level design, 
complex problem-solving, and strategic decision-making. 

Works cited 



1. A Deep Dive into Cursor: Pros and Cons of AI-Assisted Coding ..., accessed on 
May 27, 2025, https://docs.kanaries.net/topics/AICoding/cursor-review 

2. Cursor vs Windsurf vs Copilot | Best AI Code Editor for Developers - CodeAnt AI, 
accessed on May 27, 2025, 
https://www.codeant.ai/blogs/best-ai-code-editor-cursor-vs-windsurf-vs-copilot 

3. This AI IDE Can Code For You – Windsurf AI Full Tutorial - DEV ..., accessed on May 
27, 2025, 
https://dev.to/proflead/this-ai-ide-can-code-for-you-windsurf-ai-full-tutorial-4p9
4 

4. Roo Code (prev. Roo Cline) - Visual Studio Marketplace, accessed on May 27, 
2025, 
https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-clin
e 

5. Roo Code evaluation: A perspective on AI-powered coding - Qubika, accessed 
on May 27, 2025, https://qubika.com/blog/roo-code/ 

6. Top Features of Cursor AI - APPWRK, accessed on May 27, 2025, 
https://appwrk.com/cursor-ai-features 

7. Windsurf AI Agentic Code Editor: Features, Setup, and Use Cases ..., accessed on 
May 27, 2025, 
https://www.datacamp.com/tutorial/windsurf-ai-agentic-code-editor 

8. GitHub Copilot features - GitHub Docs, accessed on May 27, 2025, 
https://docs.github.com/en/copilot/about-github-copilot/github-copilot-features 

9. Bouncingfish/Roo-Cline: Autonomous coding agent right in ... - GitHub, accessed 
on May 27, 2025, https://github.com/Bouncingfish/Roo-Cline 

10. GitHub for Beginners: Essential features of GitHub Copilot, accessed on May 27, 
2025, 
https://github.blog/ai-and-ml/github-copilot/github-for-beginners-essential-featu
res-of-github-copilot/ 

11. Asking GitHub Copilot questions in GitHub - GitHub Enterprise Cloud Docs, 
accessed on May 27, 2025, 
https://docs.github.com/enterprise-cloud@latest/copilot/using-github-copilot/aski
ng-github-copilot-questions-in-githubcom 

12. Cursor AI: An In Depth Review in 2025 - Engine Labs Blog, accessed on May 27, 
2025, https://blog.enginelabs.ai/cursor-ai-an-in-depth-review 

13. Pricing | Windsurf (formerly Codeium), accessed on May 27, 2025, 
https://windsurf.com/pricing 

14. Top 5 AI IDEs for Coding with Windsurf in 2025 By Girish Kot - Peerlist, accessed 
on May 27, 2025, 
https://peerlist.io/gkotte/articles/top-5-ai-ides-for-coding-with-windsurf-in-2025 

15. Cline review – Enyan Zhang, accessed on May 27, 2025, 
https://enyanz.com/posts/cline-review/ 

16. This is how I got RooCode working like a pro coder! - Reddit, accessed on May 27, 
2025, 
https://www.reddit.com/r/RooCode/comments/1jy5mk0/this_is_how_i_got_rooco
de_working_like_a_pro_coder/ 

https://docs.kanaries.net/topics/AICoding/cursor-review
https://www.codeant.ai/blogs/best-ai-code-editor-cursor-vs-windsurf-vs-copilot
https://dev.to/proflead/this-ai-ide-can-code-for-you-windsurf-ai-full-tutorial-4p94
https://dev.to/proflead/this-ai-ide-can-code-for-you-windsurf-ai-full-tutorial-4p94
https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://qubika.com/blog/roo-code/
https://appwrk.com/cursor-ai-features
https://www.datacamp.com/tutorial/windsurf-ai-agentic-code-editor
https://docs.github.com/en/copilot/about-github-copilot/github-copilot-features
https://github.com/Bouncingfish/Roo-Cline
https://github.blog/ai-and-ml/github-copilot/github-for-beginners-essential-features-of-github-copilot/
https://github.blog/ai-and-ml/github-copilot/github-for-beginners-essential-features-of-github-copilot/
https://docs.github.com/enterprise-cloud@latest/copilot/using-github-copilot/asking-github-copilot-questions-in-githubcom
https://docs.github.com/enterprise-cloud@latest/copilot/using-github-copilot/asking-github-copilot-questions-in-githubcom
https://blog.enginelabs.ai/cursor-ai-an-in-depth-review
https://windsurf.com/pricing
https://peerlist.io/gkotte/articles/top-5-ai-ides-for-coding-with-windsurf-in-2025
https://enyanz.com/posts/cline-review/
https://www.reddit.com/r/RooCode/comments/1jy5mk0/this_is_how_i_got_roocode_working_like_a_pro_coder/
https://www.reddit.com/r/RooCode/comments/1jy5mk0/this_is_how_i_got_roocode_working_like_a_pro_coder/


17. Cursor AI IDE | Gaia, accessed on May 27, 2025, 
https://docs.gaianet.ai/agent-integrations/cursor/ 

18. Windsurf AI: The Best AI IDE for Developers? - HackerNoon, accessed on May 27, 
2025, https://hackernoon.com/windsurf-ai-the-best-ai-ide-for-developers 

19. Integrating into Jetbrain IDE - Discussion - Cursor - Community Forum, accessed 
on May 27, 2025, https://forum.cursor.com/t/integrating-into-jetbrain-ide/52298 

20. Compare: Copilot vs Windsurf vs Cursor : r/vibecoding - Reddit, accessed on May 
27, 2025, 
https://www.reddit.com/r/vibecoding/comments/1k53mrr/compare_copilot_vs_win
dsurf_vs_cursor/ 

21. Windsurf (formerly Codeium) - The most powerful AI Code Editor, accessed on 
May 27, 2025, https://windsurf.com/ 

22. Cursor vs Lovable: Pros and Cons | Rapid Dev, accessed on May 27, 2025, 
https://www.rapidevelopers.com/blog/cursor-vs-lovable-pros-and-cons 

23. Pricing | Cursor - The AI Code Editor, accessed on May 27, 2025, 
https://www.cursor.com/pricing 

24. Trae vs Cursor: AI IDE Comparison - Builder.io, accessed on May 27, 2025, 
https://www.builder.io/blog/cursor-vs-trae 

25. zapier.com, accessed on May 27, 2025, 
https://zapier.com/blog/windsurf-vs-cursor/#:~:text=Windsurf%20offers%20a%2
0limited%20free,no%20longer%20consume%20additional%20credits.) 

26. Is RooCode too expensive due to API costs? : r/RooCode - Reddit, accessed on 
May 27, 2025, 
https://www.reddit.com/r/RooCode/comments/1kcyk3e/is_roocode_too_expensiv
e_due_to_api_costs/ 

27. About billing for GitHub Copilot - GitHub Docs, accessed on May 27, 2025, 
https://docs.github.com/en/billing/managing-billing-for-your-products/managing-
billing-for-github-copilot/about-billing-for-github-copilot 

28. About billing for individual Copilot plans - GitHub Docs, accessed on May 27, 
2025, 
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-in
dividual-subscriber/billing-and-payments/about-billing-for-individual-copilot-pla
ns 

29. Flat Monthly Rate AI Coding? : r/ChatGPTCoding - Reddit, accessed on May 27, 
2025, 
https://www.reddit.com/r/ChatGPTCoding/comments/1jyh3dz/flat_monthly_rate_a
i_coding/ 

30. Windsurf Pros and Cons | User Likes & Dislikes - G2, accessed on May 27, 2025, 
https://www.g2.com/products/exafunction-windsurf/reviews?qs=pros-and-cons 

31. Roocode VS Cline: Who's the Better AI Coding IDE? - Apidog, accessed on May 
27, 2025, https://apidog.com/blog/roocode-vs-cline/ 

32. Cursor AI Was Everyone's Favourite AI IDE. Until Devs Turned on It - DEV 
Community, accessed on May 27, 2025, 
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-
turned-on-it-37d/comments 

https://docs.gaianet.ai/agent-integrations/cursor/
https://hackernoon.com/windsurf-ai-the-best-ai-ide-for-developers
https://forum.cursor.com/t/integrating-into-jetbrain-ide/52298
https://www.reddit.com/r/vibecoding/comments/1k53mrr/compare_copilot_vs_windsurf_vs_cursor/
https://www.reddit.com/r/vibecoding/comments/1k53mrr/compare_copilot_vs_windsurf_vs_cursor/
https://windsurf.com/
https://www.rapidevelopers.com/blog/cursor-vs-lovable-pros-and-cons
https://www.cursor.com/pricing
https://www.builder.io/blog/cursor-vs-trae
https://zapier.com/blog/windsurf-vs-cursor/#:~:text=Windsurf%20offers%20a%20limited%20free,no%20longer%20consume%20additional%20credits.)
https://zapier.com/blog/windsurf-vs-cursor/#:~:text=Windsurf%20offers%20a%20limited%20free,no%20longer%20consume%20additional%20credits.)
https://www.reddit.com/r/RooCode/comments/1kcyk3e/is_roocode_too_expensive_due_to_api_costs/
https://www.reddit.com/r/RooCode/comments/1kcyk3e/is_roocode_too_expensive_due_to_api_costs/
https://docs.github.com/en/billing/managing-billing-for-your-products/managing-billing-for-github-copilot/about-billing-for-github-copilot
https://docs.github.com/en/billing/managing-billing-for-your-products/managing-billing-for-github-copilot/about-billing-for-github-copilot
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-individual-subscriber/billing-and-payments/about-billing-for-individual-copilot-plans
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-individual-subscriber/billing-and-payments/about-billing-for-individual-copilot-plans
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-individual-subscriber/billing-and-payments/about-billing-for-individual-copilot-plans
https://www.reddit.com/r/ChatGPTCoding/comments/1jyh3dz/flat_monthly_rate_ai_coding/
https://www.reddit.com/r/ChatGPTCoding/comments/1jyh3dz/flat_monthly_rate_ai_coding/
https://www.g2.com/products/exafunction-windsurf/reviews?qs=pros-and-cons
https://apidog.com/blog/roocode-vs-cline/
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-turned-on-it-37d/comments
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-turned-on-it-37d/comments


33. RooCode - Reddit, accessed on May 27, 2025, 
https://www.reddit.com/r/RooCode/ 

34. GitHub Copilot Pros and Cons - Netguru, accessed on May 27, 2025, 
https://www.netguru.com/blog/github-copilot 

35. Using GitHub Copilot code review, accessed on May 27, 2025, 
https://docs.github.com/copilot/using-github-copilot/code-review/using-copilot-c
ode-review 

36. Windsurf AI Reviews: Use Cases, Pricing & Alternatives - Futurepedia, accessed 
on May 27, 2025, https://www.futurepedia.io/tool/windsurf 

37. Roo Code | AI/ML API Documentation, accessed on May 27, 2025, 
https://docs.aimlapi.com/integrations/roo-code 

38. GitHub Copilot Extensions · Your favorite tools have entered Copilot ..., accessed 
on May 27, 2025, https://github.com/features/copilot/extensions 

39. Using extensions to integrate external tools with Copilot Chat ..., accessed on May 
27, 2025, 
https://docs.github.com/en/copilot/using-github-copilot/using-extensions-to-inte
grate-external-tools-with-copilot-chat 

40. IDE Free Tier War: Windsurf's Push to Win Over Developers - AI Native Dev, 
accessed on May 27, 2025, https://ainativedev.io/news/ide-free-tier-war-windsurf 

41. The Hidden Costs of Subscription vs Pay-As-You-Go Coding Agents : r/CLine - 
Reddit, accessed on May 27, 2025, 
https://www.reddit.com/r/CLine/comments/1kuh5ds/the_hidden_costs_of_subscri
ption_vs_payasyougo/ 

42. Cursor AI Was Everyone's Favourite AI IDE. Until Devs Turned on It - DEV 
Community, accessed on May 27, 2025, 
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-
turned-on-it-37d 

43. Cline Vs Roo Code is the only comparison that makes sense if code ..., accessed 
on May 27, 2025, 
https://www.reddit.com/r/ChatGPTCoding/comments/1k3q8z7/cline_vs_roo_code
_is_the_only_comparison_that/ 

44. GitHub Copilot Review: AI-Powered Development Assistant - BitDegree, 
accessed on May 27, 2025, https://www.bitdegree.org/ai/github-copilot-review 

https://www.reddit.com/r/RooCode/
https://www.netguru.com/blog/github-copilot
https://docs.github.com/copilot/using-github-copilot/code-review/using-copilot-code-review
https://docs.github.com/copilot/using-github-copilot/code-review/using-copilot-code-review
https://www.futurepedia.io/tool/windsurf
https://docs.aimlapi.com/integrations/roo-code
https://github.com/features/copilot/extensions
https://docs.github.com/en/copilot/using-github-copilot/using-extensions-to-integrate-external-tools-with-copilot-chat
https://docs.github.com/en/copilot/using-github-copilot/using-extensions-to-integrate-external-tools-with-copilot-chat
https://ainativedev.io/news/ide-free-tier-war-windsurf
https://www.reddit.com/r/CLine/comments/1kuh5ds/the_hidden_costs_of_subscription_vs_payasyougo/
https://www.reddit.com/r/CLine/comments/1kuh5ds/the_hidden_costs_of_subscription_vs_payasyougo/
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-turned-on-it-37d
https://dev.to/abdulbasithh/cursor-ai-was-everyones-favourite-ai-ide-until-devs-turned-on-it-37d
https://www.reddit.com/r/ChatGPTCoding/comments/1k3q8z7/cline_vs_roo_code_is_the_only_comparison_that/
https://www.reddit.com/r/ChatGPTCoding/comments/1k3q8z7/cline_vs_roo_code_is_the_only_comparison_that/
https://www.bitdegree.org/ai/github-copilot-review

	ℹ️ This report is as-is from Gemini 2.5 Deep Research ℹ️ 
	Feature Comparison and Analysis of Leading AI IDEs: Cursor, Windsurf, Roo Code, and GitHub Copilot 
	1. Executive Summary 
	2. Introduction to AI IDEs in Modern Software Development 
	3. Feature Deep Dive and Comparative Analysis 
	Table 1: Key Feature Comparison Matrix 
	3.1. AI-Powered Code Assistance: Completion, Generation, and Refinement 
	3.2. Agentic Capabilities and Workflow Automation 
	3.3. Contextual Understanding and Codebase Awareness 
	3.4. Debugging, Error Correction, and Code Review 
	3.5. IDE Integration and Ecosystem 
	3.6. Pricing Models and Cost Implications 
	3.7. User Experience and Developer Feedback 

	4. Conclusions and Recommendations 
	Works cited 



